PS 126: Physical Mathematics I

Course Number and Title: PS 126 (Physical Mathematics I)
Date Revised: Oct. 11, 2010
Number of Units: 3
Prerequisite: MA 22

Course Description:
This is a course on vector analysis. Topics include vector sums and products; planar and spatial vectors; rotations, reflections, and orthogonal transformations; general linear transformations and matrices; parametric equations on a line, circle, and curve; time derivatives; rectangular, cylindrical, and spherical coordinates; differential displacements, areas, and volumes; determinants; gradient, divergence, curl, and laplacian; Dirac delta distribution; line, surface, and volume integrals; Stoke's theorem; curvilinear coordinates.

Arfken, G. and Weber,  H. (2005). Mathematical Methods for Physicists (6th ed). USA: Academic Press.
Doran, C. and Lasenby, A. (2003). Geometric Algebra for Physicists. UK: Cambridge University Press.
Fujita, S. and Godoy, S. (2010). Mathematical Physics. Germany: Wiley-VCH.
Kraut, E. (2007). Fundamentals of Mathematical Physics. USA: Dover Publications.
Hassani, S. (2008). Mathematical Methods: For Students of Physics and Related Fields. USA: Springer.
Hassani, S. (2008). Mathematical Analysis: A Modern Introduction to Its Foundations. USA: Springer.
Masujima, M. (2009). Applied Mathematical Methods for Theoretical Physics. Germany: Wiley-VCH.
Spiegel, M. (1968). Vector Analysis and an Introduction to Tensor Analysis. USA: McGraw-Hill.
Stroud, K. (2005). Vector Analysis. USA: Industrial Press.
Vaughn, M. (2007). Introduction to Mathematical Physics. Germany: Wiley-VCH.

Some Recent Syllabi Used: