ATENEO DE MANILA UNIVERSITY
SCHOOL OF SCIENCE AND ENGINEERING
DEPARTMENT OF BIOLOGY

UNDERGRADUATE PROSPECTUS
TABLE OF CONTENTS

I. About the Department of Biology 3
 Vision and Mission 3
 History 3
 Faculty Profile 5
 Student Profile 8

II. The Curriculum 10
 5-year BS Biology Program 10
 4-year BS Life Sciences Program 12
 Biomedical Science 15
 Ecology and Systematics 16
 Microbiology 17
 Molecular Biology and Biotechnology 18
 Courses 19

III. Facilities 35

IV. Research 37

V. Student Organizations 39

VI. Alumni 41

VII. Location and Contact Information 47

VIII. How to Apply 49

IX. Frequently Asked Questions 50
I. ABOUT THE DEPARTMENT OF BIOLOGY

The Department of Biology of the School of Science and Engineering in the Ateneo de Manila University is recognized for its excellence in developing students who would eventually pursue studies and professions in medicine, biological research, industry, consultancy, and the academe, among others. It is a closely knit community of students, faculty, staff, and alumni dedicated to studying and immersing themselves in the various biological disciplines. It currently offers two undergraduate honors courses: BS Biology and BS Life Sciences.

Vision and Mission

The Department of Biology envisions itself as the premier provider of excellent education and research in biomedical sciences, biotechnology, ecology and systematics, microbiology, molecular biology, and bio-education, applying a holistic, rigorous and innovative approach to the biological sciences. Its alumni become prime movers and leaders in medicine, research, industry, and the academe, working toward nation-building from a Filipino, Catholic, and Jesuit perspective.

The Department of Biology commits itself to excellence and leadership in undergraduate and graduate programs in the fields of biodiversity, biomedicine, microbiology, molecular biology, and bio-education. It is guided by a dynamic and relevant curriculum that incorporates the strengths of Ateneo tradition and the challenges of the future. As an innovative center of learning, teaching, and research in the life sciences, it is dedicated to serve the University, the country, and all of humanity for the greater glory of God.

History

50s Biology subjects are offered under the Department of Natural Sciences and Mathematics as preparation for medical studies.

1959 Coinciding with the designation of the school as the Ateneo de Manila University, students can now major in Biology. The Section of Chemistry
and Biology is established under the Department of Natural Sciences and Mathematics, with Rev. John J. Bauer, S.J. as its Chairman.

1963 The Department of Biology is established, with Fr. Bauer as its first Chairperson.

1966 The course BS Biology is offered for the first time, along with AB Major in Pre-Medicine or Pre-Dentistry. The Chairperson is Mr. Jaime Joaquin.

1967 Rev. Francisco Perez, S.J. becomes Chairperson of the Department. The current BS Biology curriculum consists of 53 units of departmental courses, 20 units of chemistry, and 10 units of physics.

1971 Albert S. Lapid becomes the first BS Biology graduate.

1975 The student organization Bio-Premed is founded. It will soon come to be known as the Pre-Med Society of Ateneo.

1976 Ma. Cristina S. Santos becomes the first female BS Biology graduate.

1992 Ma. Justina L. Bautista becomes the first from the program to graduate Summa Cum Laude and as Valedictorian.

1998 Coinciding with the restructuring of the college into the four Loyola Schools, the new BS Biology curriculum is introduced. Students can now choose between two tracks: medical research (A) and biological research (B).

2005 The student organization Biological Organization - eXplore. eXperience. eXcel. (BOx) is founded by alumnus and faculty member Ronald Allan L. Cruz (BS Bio '02).
The Department restructures its programs. BS Biology is now a five-year program, and the four-year BS Life Sciences program is introduced. BBox is accredited as an official organization and is now recognized as the Ateneo Biological Organization.

Faculty Profile

The Department of Biology currently has over 15 faculty members with full-time appointments. All have graduate degrees. Nine have Ph.D. degrees from institutions here and abroad, a number of whom have several years of post-doctoral stints from overseas institutions. Many have publications in international journals. Several hold key positions in professional biology organizations. The research interests of the faculty members are varied but fall within these four themes: biomedical science, ecology and systematics, microbiology, and molecular biology.

Merab A. Chan - Assistant Professor (Department Chairperson)
Ph.D. Biological Sciences, Macquarie University, Australia
mchan@ateneo.edu
Research interests: plant biotechnology, ecophysiology, natural products, drug discovery, biodiversity and conservation

Rhea G. Abisado - Instructor
M.S. Molecular Biology and Biotechnology, University of the Philippines-Los Baños, Philippines
Research interests: microbial genetics, biotechnology

Malona V. Alinsug - Assistant Professor
Ph.D. Plant Biology (Epigenetics), National Taiwan University, Taiwan

Ronie J. Calugay - Assistant Professor
Ph.D. Biotechnology and Life Sciences, Tokyo University of Agriculture and Technology, Japan
rcalugay@ateneo.edu
Research interests: microbiology and biotechnology, iron transport in magnetic bacteria

Maria Katrina C. Canlas - Instructor
M.Sc. Molecular Biology and Biotechnology, University of the Philippines-Diliman, Philippines
mccanlas@ateneo.edu
Research interests: immunology, molecular biology

Ronald Allan L. Cruz - Instructor
M.Sc. Marine Science, Marine Science Institute, University of the Philippines-Diliman, Philippines
rcruz@ateneo.edu
Research interests: behavioural ecology and its applications in biodiversity conservation, geometric morphometrics for the biological sciences

Hendrik Freitag - Associate Professor
hendrik.freitag@gmx.de
Ph.D. Animal Ecology, Martin-Luther-Universität Halle-Wittenberg, Germany
Research interests: ecology and systematics of freshwater invertebrates, particularly Coleoptera

Marc P. Gellynck - Instructor
mgellynck@ateneo.edu
M.D., University of Santo Tomas Faculty of Medicine and Surgery, Philippines

Catherine Genevieve B. Lagunzad - Assistant Professor
Ph.D. Biology, University of the Philippines-Diliman, Philippines
Joanna M. Padolina - Assistant Professor
Ph.D. Botany, University of Texas at Austin

Vivian A. Panes - Assistant Professor
Ph.D. Biology (Plant Molecular Genetics), University of the Philippines-Diliman, Philippines
vpanes@ateneo.edu
Research interests: DNA markers, physical and genetic mapping of plant disease resistance genes, cytogenetics of plant chromosomes

Catherine N. Perez - Instructor
M.D., University of the East-Ramon Magsaysay Memorial Medical Center, Philippines

Dennis D. Raga - Instructor
Ph.D. Biology (Developmental Biology; cand.), University of the Philippines-Diliman
Research interests: natural products and biological testing

Vernie G. Sagun - Assistant Professor
Ph.D. Plant Systematics, Molecular Systematics, University of Illinois at Urbana-Champaign

Vivian S. Tolentino - Associate Professor
Ph.D. Biology, University of the Philippines-Diliman, Philippines
vtolentino@ateneo.edu
Research interests: plant morphology, plant anatomy, plant developmental biology/embryology

Jeremy O. Torres - Instructor
M.S. Microbiology, University of Santo Tomas, Philippines
Research interests: microbiology

Millard M. Uy - Instructor
Ph.D. Biological Sciences (Molecular Sciences; cand.), University of Santo Tomas, Philippines
Research interests: molecular systematics, taxonomic revision, and conservation assessment of Philippine endemic Rubiaceae

Student Profile
The Department of Biology currently has over 400 officially enrolled undergraduate students across the five year levels. Many of our majors graduated with honors from their respective high schools, with a number of them having been Valedictorians. A good number of our majors are scholars, given financial aid based on need and/or academic excellence. There are also many dormers among the majors, most of them staying at the University Residence Halls and Dormitory. Over 400 are currently members of the Ateneo Biological Organization - eXplore. eXperience. eXcel. (BOx), the official organization for Biology and Life Sciences majors.

The number of BS Biology graduates, which as of 2011 totals 1189, has been growing steadily since the 1970s (Fig. 1). A significant majority of our graduates have proceeded directly to medical schools after graduation. Nearly one hundred percent of the Department’s alumni are accepted yearly in at least one of the top medical schools in the Philippines, with a number being accepted in schools abroad. Those who do not pursue medical studies have gone on to graduate studies in microbiology, molecular biology, conservation biology, and related disciplines and subsequently worked in the academe, industry, government, or non-government organizations.
Figure 1. Distribution of BS Biology graduates across the decades.
II. THE CURRICULUM

The Department of Biology offers two undergraduate programs: **BS Biology** and **BS Life Sciences**. Both these programs are structured to give students a competitive advantage in the many expanding fields of Biology; to allow students to develop in their chosen fields of interest; to prepare them to pursue medical studies, master and/or doctorate degrees in Biology or other related disciplines; and to prepare them for employment in industry, GO and NGOs, research institutions, consultancy firms, and health institutions.

5-year BS Biology Program

BS Biology is a 5-year undergraduate honors program that provides a holistic and rigorous approach to the biological sciences. The curriculum covers the most essential concepts, principles, and theories of biology across a diverse range of disciplines through innovative lecture and laboratory courses. The program offers its students both the Thesis and Practicum options, the latter of which would allow them to do laboratory or field research work in an affiliated institution. The Junior Term Abroad (JTA) Program is also now available to BS Biology majors, with affiliates in Asia, America, and Europe prepared to accommodate the students in their laboratories.

The BS Biology program provides the most comprehensive preparation for further education, including medical studies; virtually 100% of our medically inclined graduates have enrolled in one of the top medical schools in the country and even abroad. Graduate research programs are also a common option for our majors. Our alumni are enjoying success in their respective fields, be it in medicine, research, industry, or the academe.

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>FIRST YEAR</th>
<th>SECOND SEMESTER</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 11 Communication in English 1</td>
<td>3</td>
<td>En 12 Communication in English 2</td>
<td>3</td>
</tr>
<tr>
<td>Lit 13 Introduction to Fiction</td>
<td>3</td>
<td>Lit 14 Introduction to Poetry</td>
<td>3</td>
</tr>
<tr>
<td>Fil 11 Sining ng Pakikipagtalastasan sa Filipino I</td>
<td>3</td>
<td>Fil 12 Sining ng Pakikipagtalastasan sa Filipino II</td>
<td>3</td>
</tr>
<tr>
<td>Ma 18a Principles of Modern Mathematics I</td>
<td>3</td>
<td>Ma 20.3a Calculus for Life Sciences I</td>
<td>3</td>
</tr>
<tr>
<td>Bi 100 Gen Biology I Lec</td>
<td>3</td>
<td>Bi 101 Gen Biology II Lec</td>
<td>3</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>First Semester</td>
<td>Second Semester</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Bi 100.1</td>
<td>Gen Biology I Lab</td>
<td>2</td>
<td>Bi 101.1 Gen Biology II Lab</td>
</tr>
<tr>
<td>PE 1</td>
<td></td>
<td>(2)</td>
<td>PE 2</td>
</tr>
<tr>
<td>InTACT 1</td>
<td></td>
<td>(1)</td>
<td>InTACT 2</td>
</tr>
<tr>
<td></td>
<td>SUMMER (0 unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Th 121</td>
<td>An Introduction to Doing a Catholic Theology</td>
<td>3</td>
<td>Hi 16/18 Western/Asian History</td>
</tr>
<tr>
<td>Fl 14</td>
<td>Panitikan ng Pilipinas</td>
<td>3</td>
<td>SA 21 Sociology and Anthropology</td>
</tr>
<tr>
<td>Ma 20.3b</td>
<td>Calculus for Life Sciences II</td>
<td>3</td>
<td>Bi 130 Genetics Lec</td>
</tr>
<tr>
<td>Ch 7</td>
<td>Gen Chemistry I Lec</td>
<td>3</td>
<td>Bi 130.1 Genetics Lab</td>
</tr>
<tr>
<td>Ch 8</td>
<td>Gen Chemistry I Lab</td>
<td>2</td>
<td>Bi 150 Comparative Vertebrate Anatomy Lec</td>
</tr>
<tr>
<td>Bi 120</td>
<td>Introduction to Microbiology Lec</td>
<td>2</td>
<td>Bi 150.1 Comparative Vertebrate Anatomy Lab</td>
</tr>
<tr>
<td>Bi 120.1</td>
<td>Introduction to Microbiology Lab</td>
<td>1</td>
<td>Ch 21 Organic Chemistry Lec</td>
</tr>
<tr>
<td>PE 3</td>
<td></td>
<td>(2)</td>
<td>Ch 22.2 Organic Chemistry Lab</td>
</tr>
<tr>
<td>NSTP 1</td>
<td></td>
<td>(3)</td>
<td>PE 4</td>
</tr>
<tr>
<td></td>
<td>SUMMER (0 unit)</td>
<td></td>
<td>NSTP 2</td>
</tr>
<tr>
<td>Bi 170</td>
<td>Ecology Lec</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Bi 170.1</td>
<td>Ecology Lab</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Psy 101</td>
<td>General Psychology</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUMMER (0 unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 101</td>
<td>Philosophy of the Human Person 1</td>
<td>3</td>
<td>Hi 165 Rizal and the Emergence of the Philippine Nation</td>
</tr>
<tr>
<td>Th 131</td>
<td>Marriage, Family Life and Human Sexuality in a Catholic Perspective</td>
<td>3</td>
<td>Ph 102 Philosophy of the Human Person 2</td>
</tr>
<tr>
<td>Ch 151</td>
<td>Biochemistry Lec</td>
<td>3</td>
<td>FLC 1 Foreign Language 1</td>
</tr>
<tr>
<td>Ch 152</td>
<td>Biochemistry Lab</td>
<td>2</td>
<td>Bi 140 Cell and Molecular Biology Lec</td>
</tr>
<tr>
<td>Bi 151</td>
<td>Plant Morpho-Anatomy Lec</td>
<td>2</td>
<td>Bi 140.1 Cell and Molecular Biology Lab</td>
</tr>
<tr>
<td>Bi 151.1</td>
<td>Plant Morpho-Anatomy Lab</td>
<td>1</td>
<td>Ps 11 General Physics for Life Sciences I Lec</td>
</tr>
<tr>
<td>Bi 102</td>
<td>Biostatistics/Stat 105 Applied Statistics for the Life Sciences</td>
<td>3</td>
<td>Ps 11.1 General Physics for Life Sciences I Lab</td>
</tr>
<tr>
<td></td>
<td>Bi Elective 1</td>
<td></td>
<td>Bi Elective 1</td>
</tr>
<tr>
<td></td>
<td>SUMMER (0 unit)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph 103</td>
<td>Philosophy of Religion</td>
<td>3</td>
<td>Ph 104 Foundations of Moral</td>
</tr>
<tr>
<td>Course</td>
<td>Units</td>
<td>Course</td>
<td>Units</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------</td>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Th 141 A Theology of the Catholic Social Vision</td>
<td>3</td>
<td>Th 151 The Catholic Commitment of Today's Filipino: A Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>Bi 160 Developmental Biology Lec</td>
<td>2</td>
<td>Ps 12 General Physics for Life Sciences II Lec</td>
<td>3</td>
</tr>
<tr>
<td>Bi 160.1 Developmental Biology Lab</td>
<td>1</td>
<td>Ps 12.1 General Physics for Life Sciences II Lab</td>
<td>1</td>
</tr>
<tr>
<td>Hi 166 Philippine History</td>
<td>3</td>
<td>Bi 171 Principles of Systematics Lec</td>
<td>2</td>
</tr>
<tr>
<td>Bi Elective 2</td>
<td>3</td>
<td>Bi 171.1 Principles of Systematics Lab</td>
<td>1</td>
</tr>
<tr>
<td>Bi Elective 3</td>
<td>3</td>
<td>Bi Elective 4</td>
<td>3</td>
</tr>
<tr>
<td>Bi Elective 4</td>
<td>3</td>
<td>Bi 190 Research Methods in Biology</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
<td>TOTAL</td>
<td>17</td>
</tr>
<tr>
<td>SUMMER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 191 Bioresearch I/Bi 194 Practicum I</td>
<td>2-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FIRST SEMESTER</td>
<td></td>
<td>FIFTH YEAR</td>
<td></td>
</tr>
<tr>
<td>UNITS</td>
<td></td>
<td>SECOND SEMESTER</td>
<td>UNITS</td>
</tr>
<tr>
<td>Eco 102 Basic Economics, Agrarian Reform and Taxation</td>
<td>3</td>
<td>Pos 100 Politics and Governance</td>
<td>3</td>
</tr>
<tr>
<td>Bi 182 Plant Physiology Lec</td>
<td>2</td>
<td>Free Elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Bi 182.1 Plant Physiology Lab</td>
<td>1</td>
<td>Bi Elective 7</td>
<td>3</td>
</tr>
<tr>
<td>Bi 192 Bioresearch I/Bi 195 Practicum II</td>
<td>2/1</td>
<td>Bi Elective 8</td>
<td>3</td>
</tr>
<tr>
<td>Bi Elective 5</td>
<td>3</td>
<td>Bi 183 Animal Physiology Lec</td>
<td>2</td>
</tr>
<tr>
<td>Bi Elective 6</td>
<td>3</td>
<td>Bi 183.1 Animal Physiology Lab</td>
<td>1</td>
</tr>
<tr>
<td>Free Elective 1</td>
<td>3</td>
<td>Bi 193 Bioresearch III (for thesis option only)</td>
<td></td>
</tr>
<tr>
<td>16 -17</td>
<td></td>
<td>15 - 16</td>
<td></td>
</tr>
<tr>
<td>GRAND TOTAL</td>
<td>181-182</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The student can choose an elective from any Area of Specialization.

4-year BS Life Sciences Program

BS Life Sciences is a 4-year undergraduate honors program that provides more specialized training in the biological sciences. Majors choose from among Specializations, namely: 1) Biomedical Science, 2) Ecology and Systematics, 3) Microbiology, and 4) Molecular Biology and Biotechnology. These being the research areas of the Department, the majors are given rigorous training through innovative lecture and laboratory courses and through the undergraduate Thesis. The Junior Term Abroad (JTA) Program is also now available to BS Life Sciences majors, with affiliates
in Asia, America, and Europe prepared to accommodate the students in their laboratories.

The specialization of the BS Life Sciences majors allows them to excel in particular biological fields and prepares them for careers in these disciplines. The program produces the best researchers, practitioners, and educators with interests in medicine, biodiversity and conservation, microbiology, and molecular biology.

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>UNITS</th>
<th>SECOND SEMESTER</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>En 11 Communication in English 1</td>
<td>3</td>
<td>En 12 Communication in English 2</td>
<td>3</td>
</tr>
<tr>
<td>Lit 13 Introduction to Fiction</td>
<td>3</td>
<td>Lit 14 Introduction to Poetry</td>
<td>3</td>
</tr>
<tr>
<td>Fil 11 Sining ng Pakikipagtalastasang sa Filipino 1</td>
<td>3</td>
<td>Fil 12 Sining ng Pakikipagtalastasang sa Filipino II</td>
<td>3</td>
</tr>
<tr>
<td>Math 18a Principles of Modern Mathematics I</td>
<td>3</td>
<td>Ch 7 General Chemistry I Lec</td>
<td>3</td>
</tr>
<tr>
<td>Bi 100 Gen Biology I Lec</td>
<td>3</td>
<td>Ch 8 General Chemistry I Lab</td>
<td>2</td>
</tr>
<tr>
<td>Bi 100.1 Gen Biology I Lab</td>
<td>2</td>
<td>Bi 101 Gen Biology II Lec</td>
<td>3</td>
</tr>
<tr>
<td>PE 1</td>
<td>(2)</td>
<td>Bi 101.1 Gen Biology II Lab</td>
<td>2</td>
</tr>
<tr>
<td>InTACT 1</td>
<td>(1)</td>
<td>InTACT 2</td>
<td>(1)</td>
</tr>
<tr>
<td>17</td>
<td>PE 2</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

| SUMMER |
| UNITS |
| Ma 20.3a Applied Calculus for Life Sciences I | 3 |
| Psy 101 General Psychology | 3 |
| 6 |

<p>| SECOND YEAR |</p>
<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>UNITS</th>
<th>SECOND SEMESTER</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th 121 An Introduction to Doing a Catholic Theology</td>
<td>3</td>
<td>Hi 16/18 Western/Asian History</td>
<td>3</td>
</tr>
<tr>
<td>Fil 14 Panitikan ng Pilipinas</td>
<td>3</td>
<td>Ch 151 Biochemistry Lec</td>
<td>3</td>
</tr>
<tr>
<td>Ch 21 Organic Chemistry Lec</td>
<td>3</td>
<td>Ch 152 Biochemistry Lab</td>
<td>2</td>
</tr>
<tr>
<td>Ch 22.2 Organic Chemistry Lab</td>
<td>2</td>
<td>SA 21 Introduction to Sociology and Anthropology</td>
<td>3</td>
</tr>
<tr>
<td>Bi 120 Introduction to Microbiology Lec</td>
<td>2</td>
<td>Bi 130 Genetics Lec</td>
<td>2</td>
</tr>
<tr>
<td>Bi 120.1 Introduction to Microbiology Lab</td>
<td>1</td>
<td>Bi 130.1 Genetics Lab</td>
<td>1</td>
</tr>
<tr>
<td>Bi 102 Biostatistics/Stat 105 Applied Statistics for the Life Sciences</td>
<td>3</td>
<td>Ps 11 General Physics for Life Sciences I Lec</td>
<td>3</td>
</tr>
<tr>
<td>PE 3</td>
<td>(2)</td>
<td>Ps 11.1 General Physics for Life Sciences I Lab</td>
<td>1</td>
</tr>
<tr>
<td>NSTP 1</td>
<td>(3)</td>
<td>PE 4</td>
<td>(2)</td>
</tr>
<tr>
<td>17</td>
<td>NSTP 2</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

| SUMMER |
| UNITS |
Bi 170 Ecology Lec	3
Bi 170.1 Ecology Lab	2
Bi Specialization Course 1*	3

THIRD YEAR

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>UNITS</th>
<th>SECOND SEMESTER</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 101 Philosophy of the Human Person 1</td>
<td>3</td>
<td>Ph 102 Philosophy of the Human Person 2</td>
<td>3</td>
</tr>
<tr>
<td>Th 131 Marriage, Family Life and Human Sexuality in a Catholic Perspective</td>
<td>3</td>
<td>Hi 165 Rizal and the Emergence of the Philippine Nation</td>
<td>3</td>
</tr>
<tr>
<td>Bi 140 Cell and Molecular Biology Lec</td>
<td>2</td>
<td>Bi Specialization Course 3*</td>
<td>3</td>
</tr>
<tr>
<td>Bi 140.1 Cell and Molecular Biology Lab</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bi 160 Developmental Biology Lec</td>
<td>2</td>
<td>Bi 150 Comparative Vertebrate Anatomy Lec</td>
<td>2</td>
</tr>
<tr>
<td>Bi 160.1 Developmental Biology Lab</td>
<td>1</td>
<td>Bi 150.1 Comparative Vertebrate Anatomy Lab</td>
<td>1</td>
</tr>
<tr>
<td>Bi 197 Bioseminar</td>
<td>2</td>
<td>Bi 171 Principles of Systematics Lec</td>
<td>2</td>
</tr>
<tr>
<td>Bi Specialization Course 2*</td>
<td>3</td>
<td>Bi 171.1 Principles of Systematics Lab</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Bi 190 Research Methods in Biology</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FLC Foreign Language 1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

SUMMER

Bi 191 Bioresearch I	2
Bi Specialization Course 4*	3
	5

FOURTH YEAR

<table>
<thead>
<tr>
<th>FIRST SEMESTER</th>
<th>UNITS</th>
<th>SECOND SEMESTER</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ph 103 Philosophy of Religion</td>
<td>3</td>
<td>Ph 104 Foundations of Moral Values</td>
<td>3</td>
</tr>
<tr>
<td>Th 141 A Theology of the Catholic Social Vision</td>
<td>3</td>
<td>Th 151 The Catholic Commitment of Today’s Filipino: A Synthesis</td>
<td>3</td>
</tr>
<tr>
<td>Eco 102 Basic Economics, Agrarian Reform and Taxation</td>
<td>3</td>
<td>Pos 100 Politics and Governance</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective 1</td>
<td>3</td>
<td>Hi 166 Philippine History</td>
<td>3</td>
</tr>
<tr>
<td>Bi 192 Bioresearch II</td>
<td>2</td>
<td>Free Elective 2</td>
<td>3</td>
</tr>
<tr>
<td>Bi Specialization Course 5*</td>
<td>3</td>
<td>Bi 193 Bio research III</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>Bi Specialization Course 6*</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19</td>
</tr>
</tbody>
</table>

GRAND TOTAL

162 UNITS

*The student must choose a Specialization course from his/her chosen Area of Specialization.
Biomedical Sciences

Medical knowledge is moving rapidly. Once, penicillin was the wonder drug; now we talk about gene therapy and stem cells. Once, we dealt only with parasites and microscopic bacteria; now we face novel and emerging viruses as well as prions. Whereas large cuts were once necessary to remove a gall bladder, we now do so with robotic arms, minimizing pain and damage.

Despite these innovations, medicine is still very much grounded on its foundations—anatomy, physiology, and chemistry. Foundations in the basic sciences of medicine must be firm, but one must also be up to date with medical innovations. All in the service of one’s patients.

Students specializing in this area are given science courses that are the foundations of all medical knowledge. Pertinent electives like Parasitology, Virology, and Immunology are also offered. Current trends are reflected in the emphasis on molecular studies. Majors also undergo rigorous scientific research using modern methods and equipment, emphasizing the need for the search for innovative solutions to pressing medical problems. Thus, graduates with this specialization are adequately prepared for entry into the best medical schools and research institutions and for successful careers, whether as clinicians or as doctor-scientists.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 105</td>
<td>Entomology</td>
</tr>
<tr>
<td>Bi 121</td>
<td>Virology</td>
</tr>
<tr>
<td>Bi 122/122.1</td>
<td>Bacteriology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 123</td>
<td>Mycology</td>
</tr>
<tr>
<td>Bi 124/124.1</td>
<td>Parasitology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 125</td>
<td>Medical Microbiology</td>
</tr>
<tr>
<td>Bi 127</td>
<td>Immunology</td>
</tr>
<tr>
<td>Bi 131</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>Bi 132</td>
<td>Microbial Genetics</td>
</tr>
<tr>
<td>Bi 133</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>Bi 134</td>
<td>Medical Genetics</td>
</tr>
<tr>
<td>Bi 135</td>
<td>Population Genetics</td>
</tr>
<tr>
<td>Bi 141/141.1</td>
<td>Biotechnology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 142/142.1</td>
<td>Introductory Bioinformatics, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 152.1</td>
<td>Microscopy and Microtechnique</td>
</tr>
<tr>
<td>Bi 153.1</td>
<td>Histology</td>
</tr>
<tr>
<td>Bi 155</td>
<td>Human Anatomy and Physiology</td>
</tr>
<tr>
<td>Bi 175</td>
<td>Biodiversity</td>
</tr>
<tr>
<td>Bi 176</td>
<td>Evolution</td>
</tr>
</tbody>
</table>
Ecology and Systematics

The Philippines is an area of significant biological diversity, with an astounding number of species and high level of endemicity across taxa. However, the country is at high risk of losing its flora and fauna to extinction due in large part to human activities. The loss of these organisms would prove disastrous not only to global ecology but also to human society, which has come to depend on them greatly for sustenance, livelihood, and medicines.

The thrusts of this specialization are to study biodiversity and the many factors that impact it and, above all, to explore ideas and methodologies aimed at curtailing its loss. Majors take courses in allied fields such as evolution, population genetics, population and community ecology, behavioral ecology, and systematics. Research topics are similarly multidisciplinary, allowing the use of a wide array of protocols and technologies in the search for solutions to the pressing problems of conservation.

Graduates who specialize in this area are expected to excel in graduate studies and professions in the field of conservation biology, whether it is working in the academe or with NGOs, the government, research institutions, wildlife reserves, or zoos. Future medical doctors would benefit from knowledge of the products of the natural world and the evolution of organisms, including the most important medical scourges to humans.
Microbiology

Microbiology is a key area in the study of life. Microorganisms, being ubiquitous, diverse and metabolically versatile, are a treasure of this planet. They play an indispensable role in ecology as decomposers. Some are known agents of diseases but many are tools in production of medicines and important chemicals. The way to elucidation of the biological systems of eukaryotic organisms was paved by studies of the bacterial metabolic pathways and genetic systems. The rapid development of biotechnology and genomics is also mainly due to the tools provided by these tiny yet rich life forms.

Microbiology continues to be at the forefront of scientific investigations. Areas of concentration for research are basic microbiology focusing on study of fundamental microbial processes and applied microbiology in the fields of medicine, agriculture, ecology, industry, biotechnology and nanotechnology.

There are a number of career options available for students specializing in microbiology. They will find opportunities in medicine, industry, academia, public health, biotechnology and law.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 121</td>
<td>Virology</td>
</tr>
<tr>
<td>Bi 122/122.1</td>
<td>Bacteriology</td>
</tr>
<tr>
<td>Bi 123</td>
<td>Mycology</td>
</tr>
<tr>
<td>Bi 124/124.1</td>
<td>Parasitology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 125</td>
<td>Medical Microbiology</td>
</tr>
<tr>
<td>Bi 127</td>
<td>Immunology</td>
</tr>
<tr>
<td>Bi 128/128.1</td>
<td>Food Microbiology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 129</td>
<td>Industrial Microbiology</td>
</tr>
</tbody>
</table>
Molecular Biology and Biotechnology

Molecular biology and biotechnology are fields at the center of this “Century of Biology.” Molecular biology emphasizes the study of the molecules that make up organisms and the interactions and forces that operate among these molecules to define “life.” Genetic controls of these molecules define cellular and subcellular processes involved in cellular interaction and development. It is an integration of several fields with applications in biochemistry, cell biology, developmental biology and evolution. Biotechnology applications continue to provide tools to revolutionize these fields and fuel explosive growth in industry, agriculture, molecular medicine and forensics.

Specialization in molecular biology and biotechnology provides strong background for a variety of careers. Students will find opportunities in science careers, the academe and industry. Increasing applications in molecular medicine give students pursuing health-related professional schools such as medicine and public health current understanding of new technologies. Specialization in this course also can lead to pursuing graduate studies at the M.S. and Ph.D. levels.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi 121</td>
<td>Virology</td>
</tr>
<tr>
<td>Bi 122/122.1</td>
<td>Bacteriology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 123</td>
<td>Mycology</td>
</tr>
<tr>
<td>Bi 127</td>
<td>Immunology</td>
</tr>
<tr>
<td>Bi 128/128.1</td>
<td>Food Microbiology, Lecture and Laboratory</td>
</tr>
<tr>
<td>Bi 129</td>
<td>Industrial Microbiology</td>
</tr>
<tr>
<td>Bi 131</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>Bi 132</td>
<td>Microbial Genetics</td>
</tr>
</tbody>
</table>
Bi 133 Human Genetics
Bi 134 Medical Genetics
Bi 135 Population Genetics
Bi 141/141.1 Biotechnology, Lecture and Laboratory
Bi 142/142.1 Introductory Bioinformatics, Lecture and Laboratory
Bi 152.1 Microscopy and Microtechnique
Bi 175 Biodiversity
Bi 176 Evolution
Bi 177 Principles of Conservation Biology
Bi 179 Molecular Ecology
Bi 181/181.1 Microbial Physiology, Lecture and Laboratory
Bi 196 Current Trends in Biology

Courses

Required Major Courses
† - common to BS Biology and BS Life Sciences
* - only for BS Biology
** - only for BS Life Sciences

Bi 100 GENERAL BIOLOGY I Lecture (3 units) †
Bi 100.1 GENERAL BIOLOGY I Laboratory (2 units) †
General Biology I (Bi 100, Bi 101.1) is a 3-unit lecture and 2-unit laboratory course
designed to provide biology students with the basic concepts of botany. The course is
an introduction to plants, including their structural and functional adaptations to the
environment, genetic and ecological relationships, evolutionary development, and
significant role in the biosphere. At the end of the course, the student is expected to
appreciate the relevance of plants, which are vital to the welfare of nearly all organisms
that share Earth, including man. Renewed interest in plants should be an important
output, as environmental issues have brought the importance of plants back into sharp

Bi 101 GENERAL BIOLOGY II Lecture (3 units) †
Bi 101.1 GENERAL BIOLOGY II Laboratory (2 units) †
General Biology II (Bi 101, Bi 101.1) is a 3-unit lecture and 2-unit laboratory course that
deals with the diversity of form and function in the animal kingdom. The major topics of
discussion are animal taxonomy and biodiversity, and structure-function relationships as seen from the cellular to the organismic level, thus covering the major evolutionary trends across the major animal taxa and their structures and functions, and also increasing awareness of the plight of animals on Earth.

Bi 102 BIOSTATISTICS (3 units) †
Biostatistics (Bi 101) is a 3-unit lecture course that covers descriptive and inferential statistical methods used in the collection, tabulation, analysis, and interpretation of biological data. Emphasis is also given to the analysis of both parametric and non-parametric data obtained from real-life experiments.

Bi 120 INTRODUCTION TO MICROBIOLOGY Lecture (2 units) †
Introduction to Microbiology, Lecture (Bi 120) is a 2-unit lecture course that deals with the basic principles of microbiology covering cell structure and function, diversity, growth and metabolism, molecular biology and genetics, and ecology of both prokaryotic and eukaryotic microorganisms. Introductory topics on microbial biotechnology, medical and industrial microbiology are also presented.

Bi 120.1 INTRODUCTION TO MICROBIOLOGY Laboratory (1 unit) †
Introduction to Microbiology, Laboratory (Bi 120.1) is a 1-unit laboratory course that covers the essential techniques in manipulating microorganisms and special techniques in handling microorganisms of medical and industrial importance. An introduction to specialized fields of microbiology is also taken up.

Bi 130 GENETICS Lecture (2 units) †
Bi 130.1 GENETICS Laboratory (1 unit) †
Genetics (Bi 130, Bi 130.1) is a 2-unit lecture and 1-unit laboratory course that serves as an introduction to the fundamental concepts and principles of genetics. The programs include topics on genome organization, evolution and medical genetics.

Bi 140 CELL AND MOLECULAR BIOLOGY Lecture (2 units) †
Cell and Molecular Biology, Lecture (Bi 140) is a 2-unit lecture course that deals with a discussion of current models relating cell structure and function. The biomedical and morphological evidence upon which such models are based is critically evaluated. Some discussion focuses on the histological comparison of organelle functions in different cell types. Molecular topics include nucleotide biosynthesis, structure, replication, transcription and translation of nucleic acids; control of gene expression in bacteria and higher organisms.

Bi 140.1 CELL AND MOLECULAR BIOLOGY Laboratory (1 unit) †
Cell and Molecular Biology, Laboratory (Bi 140.1) is a 1-unit laboratory course that offers hand-on experience in laboratory protocols in genetics and molecular biology. Topics may include applied PCR techniques, electrophoresis techniques, vector construction and modification, affinity chromatography, site-directed-mutagenesis, microarrays, and prokaryotic and eukaryotic expression systems.

Bi 150 COMPARATIVE VERTEBRATE ANATOMY Lecture (2 units) †
Comparative Vertebrate Anatomy, Lecture (Bi 150) is a 2-unit lecture course that deals with important anatomical principles and theories with emphasis on the study of comparative anatomy, phylogeny and an introduction to relationship in structure, function and evolution in vertebrates.

Bi 150.1 COMPARATIVE VERTEBRATE ANATOMY Laboratory (1 unit) †
Comparative Vertebrate Anatomy, Laboratory (Bi 150.1) is a 1-unit laboratory course that provides skills-based learning of common techniques in anatomical laboratory work, as applied in the study of vertebrate form and function. Through dissections and comparison of various vertebrate specimens, evolutionary trends in this animal group are explored.

Bi 151 PLANT MORPHO-ANATOMY Lecture (2 units) *
Plant Morpho-Anatomy, Lecture (Bi 151) is a 2-unit lecture course that deals with the external and internal organization and structure of seed plants with emphasis on
angiosperms. The study of the structure of plant cells, tissues and organs are dealt with in detail. Focus is on the structural and functional specialization of the cells, tissues and plant organs. The course will also cover the development of the seed plant.

Bi 151.1 PLANT MORPHO-ANATOMY Laboratory (1 unit) *

Plant Morpho-Anatomy, Laboratory (Bi 151.1) is a 1-unit laboratory course on the actual microscopic examination and characterization of cells and tissues of the root, stem, leaf, flower, fruit and seeds. The different stages of development of the plant organs will be traced. Macroscopic examination and diagnostic features of the plant organs will be observed.

Bi 160 DEVELOPMENTAL BIOLOGY Lecture (2 units) †
Bi 160.1 DEVELOPMENTAL BIOLOGY Laboratory (1 unit) †

Developmental Biology (Bi 160, Bi 160.1) is a 2-unit lecture and 1-unit laboratory course that discusses principles of development of plants and animals at the organismal and molecular levels. Emphasis is on the formation and development of the germ layers and later organogenesis of representative types of plants and animals.

Bi 170 ECOLOGY Lecture (3 units) †
Bi 170.1 ECOLOGY Laboratory (2 unit) †

Ecology (Bi 170, Bi 170.1) is a 3-unit lecture and 2-unit laboratory course designed to introduce students to basic ecological principles and concepts and provide training on sampling methodologies that they will need in studying and understanding the structure and function of natural and man-made ecosystems.

Bi 171 PRINCIPLES OF SYSTEMATICS Lecture (2 units) †

Principles of Systematics, Lecture (Bi 171) is a 2-unit lecture course that covers modern systematic phylogeny schemes in determining evolutionary trends across the kingdoms of life using cladistics, morphometric analysis, and DNA and protein homologies.

Bi 171.1 PRINCIPLES OF SYSTEMATICS Laboratory (1 unit) †
Principles of Systematics, Laboratory (Bi 171.1) is a 1-unit laboratory course that introduces students to various taxonomic processes that include description, nomenclature, identification, and classification; and trains students in field and laboratory procedures involved in the documentation of selected groups of microorganisms, plants, and animals.

**Bi 182 PLANT PHYSIOLOGY Lecture (2 units) **
**Bi 182.1 PLANT PHYSIOLOGY Laboratory (1 unit) **
Plant Physiology (Bi 182, Bi 182.1) is a 2-unit lecture and 1-unit laboratory course dealing with the function and activities of a living plant. The course will focus on how the plant body functions in its environment, by looking into the mechanism by which its component parts grow, develop and are maintained and reproduced. An overview on some basic concepts on plant metabolism such as respiration, photosynthesis, absorption and transport systems is discussed. At the end of the course, the student should be able to relate the structural features of the plant with its functions.

**Bi 183 ANIMAL PHYSIOLOGY Lecture (2 units) **
**Bi 183.1 ANIMAL PHYSIOLOGY Laboratory (1 unit) **
Animal Physiology (Bi 183, Bi 183.1) is a 2-unit lecture and 1-unit laboratory course that uses an integrated approach to the study of organismic form and function in the maintenance of homeostasis by the investigation of vital processes using physio-chemical technique.

Bi 190 RESEARCH METHODS IN BIOLOGY (1 unit) †
Research Methods in Biology (Bi 190) is a 1-unit preparatory course for undergraduate research. The goal of this course is to familiarize the students with the basic tools of scientific inquiry. Under the supervision of a biology faculty mentor, the students will select a research topic, write a research proposal and present this proposal before a selected panel. Upon completion of this course, the students will be able to locate printed and online articles from professional scientific literature, write a literature review, develop a hypothesis, summarize and present data in the appropriate format, interpret
and evaluate data as supporting or refuting a proposed hypothesis and prepare a research proposal with a sound experimental design.

Bi 191 BIORESEARCH I (2 units) †
Bioresearch I (Bi 191) is the first part of a three-course series in conducting an undergraduate thesis. The course deals with the implementation and conduct of a research plan to gain experience in the management of a major field of study and laboratory experiment.

Bi 192 BIORESEARCH II (2 units) †
Bioresearch II (Bi 192) is the second part of a three-course series in conducting an undergraduate thesis. The course deals with continuation and completion of the research plan, with the goal of finishing data gathering and analysis in preparation for writing the thesis paper.

Bi 193 BIORESEARCH III (1 unit) †
Bioresearch III (Bi 193) is the third part of a three-course series in conducting an undergraduate thesis. The course deals with the drafting of the thesis paper, defence of the research in front of a pre-determined panel and audience of peers in the scientific community, and submission of the final paper as fulfilment of requirements for the program.

**Bi 194 PRACTICUM I (3 units) * **
Practicum I (Bi 194) is a 3-unit course for Biology majors opting for on-the-job trainings or work placement in institutions in lieu of the research courses during their fifth year. This will enable them to integrate and apply the knowledge and skills they have gained from previous courses to actual laboratory, clinical or industrial scenario.

**Bi 195 PRACTICUM II (1 unit) * **
Practicum II (Bi 195) is a 1-unit course for manuscript writing and oral defense presentation. After completion of the total number of hours required by the institution
and passing of the practicum proper through a written evaluation accomplished by the immediate supervisor, the student can enrol in this remaining 1-unit course.

Bi 197 BIOSEMINAR (2 units)
Bioseminar (Bi 197) is a 2-unit course that teaches students basic skills in verbal and written communication in biological research. Toward this end, the emphasis is on choosing topics for research, doing the actual research, writing the scientific paper, and presenting it orally both in the classroom setting and in the form of seminars. Steps in evaluating a seminar delivered by a peer are also discussed and applied in this course. The training is further enhanced by required attendance in Department-sponsored lectures and talks and in thesis defense sessions of current seniors.

Biology Electives/Specialization Courses
BM - Biomedical Science
ES - Ecology and Systematics
MB - Microbiology
MBB - Molecular Biology and Biotechnology

Bi 105 ENTOMOLOGY (3 units)
Entomology (Bi 105) is a 3-unit lecture course that discusses the anatomy, physiology, embryology, and systematics of insects.

Bi 121 VIROLOGY (3 units)
Virology (Bi 121) is a 3-unit lecture course dealing with the important principles of virology. Introductory part is about what viruses are and how they spread within individuals and populations of bacteria, plants and animals. The molecular biology of viral replication; virus-host interactions; methods of diagnosis, detection, natural and artificial control of viruses; emerging viruses and their impact to science and society; and the current uses of viruses in various scientific fields are discussed.

Bi 122 BACTERIOLOGY, Lecture (2 units)
Bacteriology, Lecture (Bi 122) is a 2-unit lecture course that deals on advanced understanding of bacteria with emphasis on their interaction with other organisms particularly humans.

Bi 122.1 BACTERIOLOGY, Laboratory (1 unit)

Bacteriology, Laboratory (Bi 122.1) is a 1-unit laboratory course which emphasizes the techniques in bacterial isolation and identification. Basic aseptic techniques such as cultivation, transferring and plating methods are reviewed in preparation for the identification. Morphological, cultural and biochemical characteristics of bacteria area studied in detail to aid in the identification of bacterial isolates.

Bi 123 MYCOLOGY (3 units)

Mycology (Bi 123) is a 3-unit lecture course on the study of fungi, dealing specifically with the biology, diversity, taxonomy, and phylogeny of fungi. The emphasis is on their life cycles, genetics, evolution, morphology, ecology, and their interaction with and significance to plants, animals, man and medicine. This well-rounded approach will also enable the students to learn the identification and management of plant, animal, and human fungal infections.

Bi 124 PARASITOLOGY Lecture (2 units)

Bi 124.1 PARASITOLOGY Laboratory (1 unit)

Parasitology (Bi 124, Bi 124.1) is a 2-unit lecture and 1-unit laboratory course that discusses morphology and life histories of protozoa, helminth and arthropod parasites, as well as host-parasite relationships and control.

Bi 125 MEDICAL MICROBIOLOGY (3 units)

Medical Microbiology (Bi 125) is a 3-unit lecture course that covers mechanisms of bacterial, fungal, and viral pathogenesis, basis for antimicrobial resistance, emerging and rediscovered infectious agents, medical outbreaks, and topics from current medical research literature. Several small-scale laboratory demonstrations are presented to focus on the diagnosis of infectious diseases, such as but not limited to: microbial
culturing, antimicrobial susceptibility testing, staining, conventional and recent laboratory testing for the identification of infectious organisms, and evaluation of host immune parameters.

Bi 127 IMMUNOLOGY (3 units)

Immunology (Bi 127) is a 3-unit lecture course that deals with the components and aspects of the immune system (natural and adaptive) as well as the function of these components in both health and disease. It includes studies on autoimmune diseases, hypersensitivities, immune deficiency, immunotherapy, allograft and the like.

Bi 128 FOOD MICROBIOLOGY, LECTURE (2 units)

Food Microbiology (Bi 128) is a 2-unit lecture course which focuses on factors affecting the growth and survival of microorganisms in food systems. Physical, chemical and biological controls of microbial growth in food are discussed. Emphasis is given to beneficial uses of microorganisms in food production such as fermentation and preservation. In addition, mechanisms employed by food-borne spoilage and pathogenic microorganisms are characterized according to their survival and elimination.

Bi 128.1 FOOD MICROBIOLOGY, LABORATORY (1 unit)

Food Microbiology, Laboratory (Bi 128.1) is a 1-unit laboratory course that teaches the techniques in isolation, detection and cultivation of food-borne microorganisms. Procedures in qualitative and quantitative detection of specific microorganisms present in different types of food are given emphasis. In addition, effects of microbial growth on the physico-chemical characteristics of different foods are also investigated.

Bi 129 INDUSTRIAL MICROBIOLOGY (3 units)

Industrial Microbiology (Bi 129) is a 3-unit lecture course that covers fundamental and applied aspects in industrial processes focusing on microorganisms of industrial importance; principles of screening and strain preservation; and fermentation processes
for production of primary and secondary metabolites and other microbial products at laboratory, pilot, and industrial scales. Field studies are included.

Bi 131 MOLECULAR GENETICS (3 units) BM, MBB
Molecular Genetics (Bi 131) is a 3-unit lecture course that deals with the molecular basis of heredity. It deals with how biological molecules interact and function to give rise to cells and complex living organisms. How genetic material (nucleic acids) is reproduced and inherited from generation to generation and how the information from genetic material is interpreted to construct the structures that constitute living organisms, as well as details of chromosome structure and function is discussed. Prokaryotic (bacterial) and eukaryotic (yeast, plant, mammalian) model systems serve as examples for evaluation. Special topics such as the genetic basis of development, immunity, cancer and evolution and population genetics are also taken up.

Bi 132 MICROBIAL GENETICS (3 units) BM, MB, MBB
Microbial Genetics (Bi 132) is a 3-unit lecture course that emphasizes on microbes as major agents of gene transfer. Various patterns of gene transfer in microorganisms are discussed. It also deals with the principles of heredity based on the concepts of the central dogma of molecular biology and the underlying microbial gene action and regulation in microorganisms (i.e. bacteria). The course also deals with the usefulness of microorganisms in the advances of recombinant DNA technology and gene cloning (i.e. as cloning vectors).

Bi 133 HUMAN GENETICS (3 units) BM, MBB
Human Genetics (Bi 133) is a 3-unit lecture course that explores the foundations and frontiers of modern human genetics, with an emphasis on understanding the latest discoveries in this rapidly changing field of research. The course begins with an overview of cell structure and cellular processes. The principles of heredity will be examined, where simple Mendelian inheritance is contrasted with the effect of multiple genes and the environment that influence complex physical or behavioral traits. Descending to the molecular level, the process of how genetic information in DNA is
read and how mutations affect gene function will be investigated. These molecular foundations are used to explore the science and social impact of modern genetic technology, including topics such as cloning, genetic testing and the new map of the human genome. The course concludes with an investigation of how genes vary in populations and how geneticists are contributing to our understanding of human evolution and diversity.

Bi 134 MEDICAL GENETICS (3 units)
BM, MBB

Medical Genetics (Bi 134) is a 3-unit lecture course on the study of the principles of genetics and the patterns of inheritance as they apply to humans. Emphasis will be on common human genetic disorders, dysmorphic syndromes, inborn errors of metabolism, the diagnosis of certain disorders, and ethical dilemmas which arise from these conditions.

Bi 135 POPULATION GENETICS (3 Units)
BM, ES, MB, MBB

Population Genetics (Bi 135) is a 3-unit lecture course that deals with the mathematical and experimental approaches to the genetics of natural populations, especially as they relate to evolution. Emphasis is also given to the interrelationship of genetics to natural selection, inbreeding, gene flow, spontaneous mutations and the bottleneck effects.

Bi 141 BIOTECHNOLOGY Lecture (2 units)
BM, ES, MB, MBB

Bi 141.1 BIOTECHNOLOGY Laboratory (1 unit)
BM, ES, MB, MBB

Biotechnology (Bi 141, Bi 141.1) is a 2-unit lecture and 1-unit laboratory course that focuses on the utilization of plant, animal, and microbial cells in producing beneficial products for the improvement of human life. The course covers molecular- and cellular-level manipulations to design and produce substances and/or organisms useful in solving crucial problems that humans are facing.

Bi 142 INTRODUCTORY BIOINFORMATICS Lecture (2 units)
BM, ES, MB, MBB

Bi 142.1 INTRODUCTORY BIOINFORMATICS Laboratory (1 unit)
BM, ES, MB, MBB
Introductory Bioinformatics (Bi 142, Bi 142.1) is a 2-unit lecture and 1-unit laboratory course that would provide an overview on the inter-disciplinary methods of solving biological problems involving sequences, proteins, and genomes. As an introductory course, the focus would be the functional applications rather than the theoretical aspects of the computational approaches. Various existing methods will be critically described and the strengths and limitations of each will be discussed. The aim is to provide a practical description of the topics, tools, issues and current trends in these and related fields. While no computer experience or programming skills are required, prior exposure to personal computers, e-mail, and the Internet are essential. All homework and coursework must be submitted electronically.

Bi 152.1 MICROSCOPY AND MICROTECHNIQUE Laboratory (3 units)

Microscopy and Microtechnique (Bi 152.1) is a 3-unit laboratory course that covers general and specific methods on preparation of slides using different techniques. Cells are tiny, colorless, and translucent, and details of their structures depend on sectioning and processing using a variety of stains. Much of microscopy depends on microtechniques that provide sufficient contrast to make cellular features visible. Techniques suitable for classroom teaching and for research work are discussed, and scientific bases behind each step are emphasized. General and specific reagents for various techniques are differentiated. The basic/general steps for slide processing are also discussed. Topics to be covered include free-hand sectioning, sectioning using the sliding and rotary microtome, paraffin method, squash and smear technique, maceration, different clearing techniques, and epidermal peels.

Bi 153.1 HISTOLOGY, Laboratory (3 units)

Histology (153.1) is a 3-unit laboratory course that provides a comparative study of the structure and function of mammalian tissues and organs using histochemistry, electron and light microscopy and other imaging techniques.

Bi 154 INVERTEBRATE ZOOLOGY Lecture (3 units)
Invertebrate Zoology (Bi 154) is a 3-unit lecture course that deals with the morphology, systematics, ecology, and physiology of representative invertebrates.

Bi 155 HUMAN ANATOMY AND PHYSIOLOGY Lecture (3 units)

Human Anatomy and Physiology (Bi 155) is a 3-unit lecture course on the essential principles and concepts of the structure and function of the human body and the mechanisms for maintaining homeostasis. The course will include the study of cells and tissues, and the different organ systems. The course will also provide a clear understanding of how these organ systems function and interact with each other. Certain disease processes that affect the human body may also be discussed. This is intended as a beginner’s course/survey course for students who would like to pursue a medical or paramedical career, as well as a general natural science course.

Bi 172 MARINE BIOLOGY (3 units)

Marine Biology (Bi 172) is a 3-unit lecture course that deals with the diversity and ecology of marine species across the biological Kingdoms. Marine organisms across habitats--from the intertidal mangroves and seagrass beds to the coral reefs and the open sea--and the various ecological processes that affect them are discussed. Current issues in human impacts on the marine environment are also covered.

Bi 174 ECOLOGY OF ANIMAL BEHAVIOR (3 units)

Ecology of Animal Behavior (Bi 174) is a 3-unit lecture course dealing with the integration of the principles of ecology, evolution and animal behavior. The behavioral patterns of animals are discussed in the context of the evolution of traits in response to such ecological processes as competition, predation, mating, and parental care.

Bi 175 BIODIVERSITY (3 units)

Biodiversity (Bi 175) is a 3-unit lecture course that is designed to help students understand the processes involved in the development of the tremendous variety and variation of life; appreciate the nature and importance of genetic, species, ecosystem and cultural diversity; learn essential methods used in proper documentation of
biological resources; and become aware of the issues on loss of global and local biodiversity.

Bi 176 EVOLUTION (3 units)
Evolution (Bi 176) is a 3-unit lecture course that focuses on evidences and principles involved in the evolution of plants and animals including man. It also emphasizes the concepts and theories of modern evolutionary biology including the mechanism of genetic change in populations, speciation pattern and geologic change through time.

Bi 177 PRINCIPLES OF CONSERVATION BIOLOGY (3 units)
Principles of Conservation Biology (Bi 177) is a 3-unit lecture course that deals with the maintenance, loss, and preservation of global and local biodiversity. Biodiversity and allied fields—among them population genetics, population and community ecology, behavioral ecology, and systematics—are discussed alongside economics and resource management, stressing the multidisciplinarity and rapid development in the search for solutions to problems in conservation biology. Special emphasis is on conservation biology and sustainable development of biological resources in the Philippines, one of the major global biodiversity hotspots.

Bi 178 BIOGEOGRAPHY (3 units)
Biogeography (Bi 178) is a 3-unit lecture course that deals with the geographical distribution patterns of species and the various factors that determine them. The focus is on ecological and evolutionary factors, such as dispersal and vicariance, and anthropological sources of pattern changes over time. Being an interdisciplinary course, pertinent concepts not only in biology but also in geography and geology are discussed.

Bi 179 MOLECULAR ECOLOGY (3 units)
Molecular Ecology (Bi 179) is a 3-unit lecture course that deals with the increasing use of molecular techniques in approaching problems in ecology, evolution, biodiversity, and conservation. Concepts and issues from a wide range of topics including genes and their products, behavior, population structure, microbial diversity, genetically modified
organisms (GMOs) are discussed. The course also covers molecular ecology techniques such as molecular marker development, molecular diagnostics, and barcoding.

BI 180 PHYSIOLOGICAL ECOLOGY (3 units) ES, MB
Physiological Ecology (Bi 180) is a 3-unit lecture course that deals with the interplay between the physiological mechanisms of organisms and their environment. It delves into how organisms adjust their behavior and physiology in response to environmental changes in order to survive and reproduce successfully. Among the physico-chemical factors affecting the activities of organisms and thus will be focused on in the course are temperature, light availability, water availability, salinity, and pH. This course is particularly significant due to the environmental fluctuations brought about by changing global climate.

Bi 181 MICROBIAL PHYSIOLOGY Lecture (2 units) BM, ES, MB, MBB
Bi 181.1 MICROBIAL PHYSIOLOGY Laboratory (1 unit) BM, ES, MB, MBB
Microbial Physiology (Bi 181, Bi 181.1) is a 2-unit lecture and 1-unit laboratory course that deals on the study of microbial cell structure and function. Various processes undergone by microorganisms to obtain energy and grow even in unusual environments are discussed.

BI 184.1 BIOMEDICAL INSTRUMENTATION (3 units) BM
Biomedical Instrumentation (Bi 184.1) is a 3-unit laboratory course that discusses the methods and instrumentation used for measuring physiologic variables of the human body. It provides a perspective on the principles of design, applications, operation, calibration, maintenance, and troubleshooting of biomedical equipment. Topics include biomedical instruments like sensors for bio-potentials (fluid flow, pressure, temperature, respiratory pressure and flow, blood-gas, heart sounds, cell, nerve and muscle potentials, etc.), bioelectric amplifiers and signal processing, surface electrodes, electrocardiographs, cardiac assist devices, intensive care unit instrumentation (e.g.
incubator, respirator, anaesthesia machine, dialysis machine), medical imaging, and electrical safety in the medical environment.

Bi 196 CURRENT TRENDS IN BIOLOGY Lecture (3 units)

Current Trends in Biology (Bi 196) is a 3-unit lecture course that discusses recent development in the application of biology in the industry and research.

The Junior Term Abroad (JTA) Program

BS Biology and BS Life Sciences majors can now, in their junior year, take the Junior Term Abroad (JTA) Program, under which they take a semester's worth of Biology subjects at any one of several partner institutions of the School of Science and Engineering in Asia, Australia, and the USA. The universities currently in roster of affiliates are: Osaka University in Japan; Hong Kong University of Science and Technology in Hong Kong; Chung-ang University and University of Incheon in Korea; Nanyang Technology University in Singapore; La Trobe University and New Castle University in Australia; and Fordham University and University of San Francisco in the USA. As of this writing, one BS Biology major has finished his program at the Hong Kong University of Science and Technology and one BS Life Sciences major has finished his at the University of San Francisco.

For more information, go to http://sites.google.com/site/sosejta/.
III. FACILITIES

The Science Education Complex (SEC) A houses the Biology Department. The Department has six teaching laboratories that are located in SEC B: Botany Laboratory; Zoology Laboratory; Ecology, Histology, and Developmental Biology Laboratory; Genetics Laboratory; Microbiology Laboratory; and Comparative Anatomy Laboratory.

Also located in SEC B are the research laboratories, wherein faculty members and undergraduate and graduate students conduct their research and thesis. These research laboratories include the Bioassay and Tissue Culture, Genetics and Molecular Biology, Microbiology, and Microtechnique rooms. Among the equipment routinely used by the faculty and students are the inverted microscope; 96-well microplate reader; CO₂ incubator; Biosafety Level (BSL) 2 cabinet; rotary evaporator; PCR Thermocyclers; agarose and PAGE electrophoresis set-ups; gel documentation system; UV-VIS spectrophotometer; deionizer; ultralow freezer; refrigerated centrifuge; autoclaves, orbital shaker incubator; distilling apparatus; and microtome. The Department also has a PowerLab system for teaching and research applications in physiology, biomedical sciences, and sports/exercise studies. The Laboratories are adequately stocked with chemicals and reagents, and the ratio of microscope to student is 1:1 in regular Biology classes.

Located on a separate lot between Alingal Hall and the College Covered Courts is the Biological Research House, where many students stock animal specimens for their theses.

Figure 2 shows several of these facilities.
Figure 2. Biology Facilities. (Top Row, L-R) Specimen collection; Tissue Culture Research Laboratory; Biological Research House; (Middle Row, L-R) Botany Teaching Laboratory; Stockroom; Genetics and Molecular Biology Research Laboratory; (Bottom Row, L-R) Comparative Anatomy Teaching Laboratory; Microbiology Research Laboratory; Zoology Teaching Laboratory.
IV. RESEARCH

The Departmental Research Thrust is **Biodiversity for Sustainability: Exploring Life Forms and their Components for Environment and Society**.

The Department of Biology offers research opportunities that reflect the breadth of the discipline today. This is a direct result of the multidisciplinary nature of modern biology—where applications of common principles, concepts, and methods from mathematics, physics, chemistry, and computer science provide fresh perspectives into biological problems such as how an organism replicates itself; the function of microorganisms in the gut of mammals; and how organisms and communities respond to environmental pressures like infection, nutrient depletion, and climate change. Because of this, our students are exposed to a wide range of research techniques that encompass all levels of biological organization—from molecular and cellular to populations and ecosystems.

To provide organization, and to reflect the research interests of our current faculty, we cluster our research activities into five fields: Biological Education, Biomedical Science, Ecology and Systematics, Microbiology, and Molecular Biology and Biotechnology. Many projects in the department show an overlap among these fields. Examples are the molecular fingerprinting studies in *Moringa oleifera* (molecular biology, ecology and systematics); characterization of the virgin coconut oil fermentation process (molecular biology and biotechnology, microbiology); and screening of plant natural products for medicinal purposes (biomedical science, microbiology, molecular biology and biotechnology).

We actively apply for grants to fund our research activities from both internal and external funding sources. Current research activities are funded by the Department of Science and Technology, Department of Agriculture, University Research Council, and the Loyola Schools Scholarly Work Faculty Grant. The faculty have had their researches published in local and international journals, including those indexed in SCOPUS and Thomson Reuters-ISI.
Existing Projects

Developmental Plant Morphology and Anatomy, with Applications *(Ecology and Systematics, Plants)*
Project Leader: Vivian S. Tolentino, Ph.D.

Natural Products and Biological Testing *(Ecology and Systematics, Plants)*
Project Leader: Dennis D. Raga, Ph.D. (cand.)

Geometric Morphometrics as a Tool for Conservation Biology and Biomedicine *(Ecology and Systematics, Animals)*
Project Leader: Ronald Allan L. Cruz, M.Sc.

Aquatic Biodiversity and Conservation of Philippine Streams; Evolutionary Biology and Taxonomy of Stream-Dwelling Beetles and Decapods *(Ecology and Systematics, Animals)*
Project Leader: Hendrik Freitag, Ph.D.

Novel Molecules from Novel Microorganisms *(Microbiology)*
Project Leader: Ronie J. Calugay, Ph.D.

Collaboration Network for the Management of Migratory Rice Planthoppers and Associated Virus Diseases of Rice in Asia *(Molecular Biology, Plants)*
Project Leader: Gilda B. Jonson, Ph.D.

DNA Fingerprinting and DNA Sequence Based Genetic Diversity Analyses of Selected Valuable Crops in the Philippines *(Molecular Biology, Plants)*
Project Leader: Vivian A. Panes, Ph.D.
V. STUDENT ORGANIZATION

Biology and Life Sciences majors have always been active members of the Ateneo community, primarily through the various student organizations that they join. Serving as their home organization in particular is the Ateneo Biological Organization exhore xperience excel (BOx). It was formed in October 2004 to address the need of the Biology majors for a holistic, immersive experience in the biological sciences. Its main goal at its inception was to provide its members with an avenue to explore and experience various sub-disciplines of biology and to excel in their chosen endeavors. Now an accredited student organization of the Loyola Schools, BOx has gone beyond academic and research-oriented formation to become, quite simply, one of the most formative, indispensable, and life-changing experiences that a Biology or Life Sciences major could have. By promoting the unity of the entire biology community through its “AdMU One Bio” thrust and helping its members explore, experience, and excel in diverse biological interests, BOx has become a family that knows that the best way to study life is to live it.

The “AdMU One Bio” theme is not merely a catch-phrase; it has embodied BOx’s success at unifying the batches of Biology and Life Sciences. That, perhaps, counts as BOx’s greatest achievement. Other milestones for the organization are its being a founding member of the Biology Majors Alliance of the Philippines (BMAP); seven-time basketball champions in the Intramurals Athletics Council (IAC); organizers of the annual Biology Night and Biolympics sportsfest; and premier advocate of animal welfare and biodiversity within the campus. In the school year 2011-2012, BOx was one of three finalists for Most Outstanding Student Group in the Loyola Schools Awards for Leadership and Service. BOx was also a finalist for Best Executive Board and Best New Project (Haynayan: BioCamp 2012) in the Council of Organizations of Ateneo (COA) Awards.
Over 400 Biology and Life Sciences majors are currently members of BOx. Many majors also join the Pre-Med Society of Ateneo (PMSA), which was founded in 1975 by a Biology major.
VI. ALUMNI

The Department of Biology is proud of its over 1000 alumni, many of whom have excelled in and become leaders in their chosen careers. A significant majority are in the medical fields, with most others in research, the academe, industry, and business. Among the Metro Manila-based medical school options, the five most popular in the last ten years (2001 to 2011) have been 1) Ateneo School of Medicine and Public Health (ASMPH); 2) University of Santo Tomas (UST) Faculty of Medicine and Surgery; 3) University of the East Ramon Magsaysay Memorial Medical Center (UERMMMC); 4) University of the Philippines-Manila College of Medicine; and 5) St. Luke's-William H. Quasha College of Medicine. Many alumni have also gone to other medical schools outside Metro Manila, graduate studies in biology, and direct employment. These data are summarized in Figure 3.

Figure 3. Where the BS Biology alumni have gone after graduation.
Our alumni perform very well in the Physician Board Examinations, with a number having made it into the Top 10. The following alumni have placed:

Elizabeth Ann M. Fajardo (BS Biology '77)
- Eighth, June 1982 Exams

Edmundo G. Gonzalez (BS Biology '77)
- First, December 1982 Exams

Jose Godofredo P. Diaz (BS Biology '79)
- Fourth, December 1985 Exams

Jose Adriano Mateo M. Santiago (BS Biology '82)
- Fifth, August 1987 Exams

Benjamin S. Bernandino, Jr. (BS Biology '90)
- Seventh, February 1996 Exams

Carmencita R. Esquivel (BS Biology '95)
- Sixth, February 2005 Exams

Carlo Rodrigo S. Carreon (BS Biology '96)
- Second, February 2002 Exams

Kristine T. Lo (BS Biology '96)
- Ninth, February 2002 Exams

Maria Czarina M. Acelajado-Onoya (BS Biology '98)
- Ninth, August 2003 Exams

Mia Isadora L. Loyola-Fronteras (BS Biology '99)
- Fifth, February 2005 Exams

Patrick Leonard G. Co (BS Biology ‘00)
- First, August 2006 Exams

Tamara Louise J. Razon (BS Biology ‘01)
- Second, February 2007 Exams

Jeffrey P. Mendoza (BS Biology ‘02)
- Seventh, August 2007 Exams

Abigail R. Arana (BS Biology ‘02)
- Second, February 2008 Exams

Arik Paolo Isaiah C. de la Cruz (BS Biology ‘02)
- Third, February 2008 Exams

Gentry George T. King (BS Biology ‘03)
- Third, August 2008 Exams

Gwenalyn Gail C. Garcia (BS Biology ‘05)
- Fourth, August 2010 Exams

The following are just a few of the outstanding alumni of the Department:

Raul K. Suarez, Ph.D. (BS Biology ‘73)
- Professor, University of California-Santa Barbara

Alfred H. Belmonte, M.D. (BS Biology ‘74)
- Student Affairs Coordinator, University of Santo Tomas (UST) Faculty of Medicine and Surgery
- Associate Professor, UST Faculty of Medicine and Surgery
- Board of Regents, Philippine College of Surgery

Telesforo E. Gana, Jr., M.D. (BS Biology ’74)
- Chief, Urology Division, Philippine General Hospital
- Board of Governors, Philippine College of Surgeons
- Board of Trustees, PGH Medical Foundation, Inc.

Rey Gerardo E. Bacarro (BS Biology ’77)
- Former President and General Manager, Pfizer, Inc.
- President, Board of Trustees, Kythe

Manuel M. Mariano, M.D. (BS Biology ’78)
- CEO, Manuel M. Mariano Hospital and Medical Center
- Board of Trustees, St. Luke’s College of Medicine

Gina S. Itchon, M.D. (BS Biology ’80)
- Head, Department of Preventive and Community Medicine, College of Medicine, Xavier University

Teofilo L. Lee Chiong, Jr., M.D. (BS Biology ’82)
- Medical Director, Sleep Center, National Jewish Medical and Research Center, Denver CO
Dominic Paul T. Piamonte, M.D., Ph.D. (BS Biology ‘83)
- Group Manager, Area Manager, Interaction Design, Volvo Technology Corporation, Sweden

Maria Eufemia C. Yap, M.D., M.Sc. (BS Biology ‘83)
- Director, Health Unit, Ateneo Graduate School of Business
- Associate Dean, Ateneo School of Medicine and Public Health

Angela Nina Ann R. Ingle, Ph.D. (BS Bio ‘85)
- Conservation ecologist, Wildlife biologist and educator

Norman Dennis E. Marquez, M.D. (BS Biology ‘87)
- Director, Health Sciences Program, School of Science and Engineering, Ateneo de Manila University

Caroline Joan S. Picart, Ph.D. (BS Biology ‘87)
- Internationally recognized scientist, author, and radio show host (“The Dr. Caroline ‘Kay’ Picart Show”)

Ian Mark Garret M. Gampon, M.D. (BS Biology ’92)
- Assistant Professor, Department of Pediatrics, Mount Sinai School of Medicine, New York NY

Jo Marie V. Acebes, D.V.M., Ph.D. (cand.) (BS Bio ’94)
- Former Humpback Whale Research and Conservation Project (HWRCP) consultant, World Wide Fund for Nature
- Cetacean expert
Jan Denton A. Chua, M.D., M.B.A. (BS Biology '99)
- CEO, iScan Electronics, Inc.
- Managing Director, HB Calleja National Heart Institutes

Catherine Denise R. Jayme (BS Biology '00)
- Senior Manager, Executive Education and Development, Lee Kuan Yew School of Public Policy, National University of Singapore
VII. LOCATION AND CONTACT INFORMATION

The Biology Department office, classrooms, and laboratories are all located at the Science Education Complex (SEC), particular SEC A and SEC B. The Biology Department is at SEC A105 and the laboratories are at SEC B. Figure 3 shows the location of these.

Figure 4. Location of the Biology Department offices and laboratories in the Loyola Schools campus. Figure taken from the Ateneo de Manila University website (http://ateneo.edu/map/ls-map.htm).

Mailing address
Department of Biology, School of Science and Engineering,
Ateneo de Manila University
Katipunan Avenue, Loyola Heights, Quezon City 1108, Philippines

Phone
+63 (2) 426-6001 loc. 5610

Fax
+63 (2) 426-1034
E-mail
biology@ateneo.edu

Web
VIII. HOW TO APPLY

Note: The following information is taken from the official Ateneo de Manila University website (http://ateneo.edu), to which all interested applicants are referred for further information.

All freshman applicants must secure an application form from the Office of Admission and Aid, G/F Kostka Hall within a designated period from June to August. The application and testing fee for applicants from local high schools is PhP500.00. The application fee for applicants from high schools abroad is US$50.00 or PhP2,800.00.

Freshman applicants must then fill out and submit the completed application form and exam permit, together with all other requirements, at the Office of Admission and Aid on or before the designated date in August. **Incomplete Application Forms will not be processed.**

Registration for the Ateneo College Entrance Test (ACET) for freshmen (local and foreign) who will be taking the exam is until a designated date in August. The ACET will be administered on two designated Saturdays in September at the Loyola Heights campus from 7:30 AM to 12:30 PM, and 1:30 PM to 6:30 PM. This exam covers the areas of Mathematics, English, and General Intelligence.

Applicants presently residing abroad may submit the result of their Scholastic Aptitude Test I (SAT I) taken this year or two years ago in lieu of the ACET.
IX. FREQUENTLY ASKED QUESTIONS

1. Are BS Biology and BS Life Sciences honors programs?
 Yes, only those that have made it to the Top 15% of ACET takers can be admitted to these programs.

2. What are the retention requirements for BS Biology and BS Life Sciences majors?
 For a major of the BS Biology or BS Life Sciences program to stay in his/her program in the succeeding school year, he/she must have:
 - Had a yearly cumulative QPI of 2.50 in the previous school year;
 - Passed Bi 100/100.1 General Biology I and Bi 101/101.1 General Biology II in his/her first full year in the program;
 - Not had more than five (5) D’s and F’s in science subjects (biology, chemistry, mathematics, physics) for the duration of his/her program;
 - Not failed a particular science subject (biology, chemistry, mathematics, physics) more than once; and
 - Been recommended for retention by at least two (2) members of the Department of Biology faculty, should he/she be unable to meet any or several of the above requirements.

3. Are BS Biology and BS Life Sciences difficult courses?
 They are certainly challenging courses, with some semesters having two to three science courses with laboratories, but with the right attitude toward learning and diligent studying, students will reap all the benefits of the rigorous biological education provided by the Department.

4. Will BS Biology and BS Life Sciences majors have the opportunity to engage in non-academic activities?
 Certainly. There are over 40 student organizations to choose from, not including the varsity athletics teams. Among these, most important is the Ateneo Biological
Organization eXplore eXperience eXcel (BOx), recognized as the home organization of BS Biology and BS Life Sciences majors. It allows its members to bond with fellow majors, showcase their talents, develop their knowledge and skills in biology, serve the community and environment through outreach projects, and engage in sports (through the various BOx sports teams) and arts (through BeatBOx, the organization’s dance group, and Voice BOx, the organization’s singing group). Many majors are also members of the Pre-Med Society of Ateneo (PMSA).

5. *Is a medical career the only option for graduates of BS Biology and BS Life Sciences?*

No. While a significant majority of our majors have gone on to pursue medical careers, many have also found success in careers in the academe, research, industry, government, and business. Several of our alumni have gone on to take graduate studies in diverse biological fields and even in non-scientific endeavours such as law and business. See Figure 3.

6. *Can graduates of BS Biology and BS Life Sciences get into any medical school of their choice?*

Nearly one hundred percent of our majors who took the National Medical Admissions Test (NMAT) have been able to get into at least one of the top medical schools in the country, including Ateneo School of Medicine and Public Health (ASMPH). Among the Metro Manila-based medical school options, the five most popular in the last ten years (2001 to 2011) have been 1) ASMPH; 2) University of Santo Tomas (UST) Faculty of Medicine and Surgery; 3) University of the East Ramon Magsaysay Memorial Medical Center (UERMMMC); 4) University of the Philippines-Manila College of Medicine; and 5) St. Luke’s-William H. Quasha College of Medicine (refer to Figure 3). Some have been accepted in medical schools abroad.

To ease the transition from BS Biology or BS Life Sciences to the medical program of the ASMPH, the three required cognates (HSC 55 Introduction to
Epidemiology, DS 175.80 Political Economy of Health and Development, LS 13 Principles of Management for the Service Sector) are considered Biology Specialization Courses for BS Life Sciences majors under the Biomedical Sciences Specialization.

7. What is/are the difference/s between BS Biology and BS Life Sciences?

The following table shows the basic differences between the two courses:

<table>
<thead>
<tr>
<th>BS Biology</th>
<th>BS Life Sciences</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-year curriculum (180-181 units)</td>
<td>4-year curriculum (162 units)</td>
</tr>
<tr>
<td>Comprehensive and holistic approach</td>
<td>Specialized approach</td>
</tr>
<tr>
<td>8 Biology Electives, taken from any Area of Specialization</td>
<td>6 Specialization Electives, taken from one Area of Specialization</td>
</tr>
<tr>
<td>Summer classes only during junior and senior year</td>
<td>Summer classes during sophomore, junior and senior years</td>
</tr>
<tr>
<td>Thesis and Practicum options</td>
<td>Thesis option only</td>
</tr>
</tbody>
</table>

8. What are the differences among these courses and BS Health Sciences or other pre-med courses in Ateneo?

BS Biology and BS Life Sciences provide rigorous and comprehensive education in the pertinent biological sciences, such as genetics, anatomy, physiology, and microbiology. BS Health Sciences, whose approach toward pre-medical training is non-traditional like the curriculum of the Ateneo School of Medicine and Public Health (ASMPH), emphasizes more on chemistry and subjects in management and the social sciences. Health Sciences majors are required to take only eight units of preparatory biology subjects (General Biology, Cell and Molecular Biology). BS Psychology is also recognized as a pre-med program; their majors take courses in botany, zoology, and another biology subject (usually comparative anatomy or cell and molecular biology).